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CHAPTER 11:  Vibrations and Waves  

Answers to Questions  

1. The blades in an electric shaver vibrate, approximately in SHM. 
The speakers in a stereo system vibrate, but usually in a very complicated way since many notes are 
being sounded at the same time. 
A piano string vibrates when struck, in approximately SHM. 
The pistons in a car engine oscillate, in approximately SHM.  
The free end of a diving board oscillates after a diver jumps, in approximately SHM.  

2. The acceleration of a simple harmonic oscillator is zero whenever the oscillating object is at the 
equilibrium position.  

3. The motion of the piston can be approximated as simple harmonic.  First of all, the piston will have a 
constant period while the engine is running at a constant speed.  The speed of the piston will be zero 
at the extremes of its motion – the top and bottom of the stroke – which is the same as in simple 
harmonic motion.  There is a large force exerted on the piston at one extreme of its motion – the 
combustion of the fuel mixture – and simple harmonic motion has the largest force at the extremes of 
the motion.  Also, as the crankshaft moves in a circle, its component of motion in one dimension is 
transferred to the piston.  It is similar to Fig. 11-6.  

4. Since the real spring has mass, the mass that is moving is greater than the mass at the end of the 

spring.  Since 
1

2

k
f

m
, a larger mass means a smaller frequency.  Thus the true frequency will 

be smaller than the “massless spring” approximation.  And since the true frequency is smaller, the 
true period will be larger than the “massless spring” approximation.  About 1/3 the mass of the 
spring contributes to the total mass value.   

5. The maximum speed is given by maxv A k m .  Various combinations of changing A, k, and/or m 

can result in a doubling of the maximum speed.  For example, if k and m are kept constant, then 
doubling the amplitude will double the maximum speed.  Or, if A and k are kept constant, then 
reducing the mass to one-fourth its original value will double the maximum speed.  Note that 

changing either k or m will also change the frequency of the oscillator, since 
1

2

k
f

m
.    

6. The scale reading will oscillate with damped oscillations about an equilibrium reading of 5.0 kg, 
with an initial amplitude of 5.0 kg (so the range of readings is initially from 0.0 kg and 10.0 kg).  
Due to friction in the spring and scale mechanism, the oscillation amplitude will decrease over time, 
eventually coming to rest at the 5.0 kg mark.  

7. The period of a pendulum clock is inversely proportional to the square root of g, by Equation 11-11a, 

2T L g .  When taken to high altitude, the value of g will decrease (by a small amount), which 

means the period will increase.  If the period is too long, the clock is running slow and so will lose 
time.  
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8. The tire swing approximates a simple pendulum.  With a stopwatch, you can measure the period T of 

the tire swing, and then solve Equation 11-11a for the length, 
2

24

gT
L .  

9. To make the water “slosh”, you must shake the water (and the pan) at the natural frequency for water 
waves in the pan.  The water then is in resonance, or in a standing wave pattern, and the amplitude of 
oscillation gets large.  That natural frequency is determined by the size of the pan – smaller pans will 
slosh at higher frequencies, corresponding to shorter wavelengths for the standing waves.  The 
period of the shaking must be the same as the time it takes a water wave to make a “round trip” in 
the pan.  

10. Some examples of resonance:   
Pushing a child on a playground swing – you always push at the frequency of the swing.   
Seeing a stop sign oscillating back and forth on a windy day.   
When singing in the shower, certain notes will sound much louder than others.   
Utility lines along the roadside can have a large amplitude due to the wind.   
Rubbing your finger on a wineglass and making it “sing”.   
Blowing across the top of a bottle.   
A rattle in a car (see Question 11).  

11. A rattle in a car is very often a resonance phenomenon.  The car itself vibrates in many pieces, 
because there are many periodic motions occurring in the car – wheels rotating, pistons moving up 
and down, valves opening and closing, transmission gears spinning, driveshaft spinning, etc.  There 
are also vibrations caused by irregularities in the road surface as the car is driven, such as hitting a 
hole in the road.  If there is a loose part, and its natural frequency is close to one of the frequencies 
already occurring in the car’s normal operation, then that part will have a larger than usual amplitude 
of oscillation, and it will rattle.  This is why some rattles only occur at certain speeds when driving.  

12. The frequency of a simple periodic wave is equal to the frequency of its source.  The wave is created 
by the source moving the wave medium that is in contact with the source.  If you have one end of a 
taut string in your hand, and you move your hand with a frequency of 2 Hz, then the end of the string 
in your hand will be moving at 2 Hz, because it is in contact with your hand.  Then those parts of the 
medium that you are moving exert forces on adjacent parts of the medium and cause them to 
oscillate.  Since those two portions of the medium stay in contact with each other, they also must be 
moving with the same frequency.  That can be repeated all along the medium, and so the entire wave 
throughout the medium has the same frequency as the source.  

13. The speed of the transverse wave is measuring how fast the wave disturbance moves along the cord.  
For a uniform cord, that speed is constant, and depends on the tension in the cord and the mass 
density of the cord.  The speed of a tiny piece of the cord is measuring how fast the piece of cord 
moves perpendicularly to the cord, as the disturbance passes by.  That speed is not constant – if a 
sinusoidal wave is traveling on the cord, the speed of each piece of the cord will be given by the 
speed relationship of a simple harmonic oscillator (Equation 11-9), which depends on the amplitude 
of the wave, the frequency of the wave, and the specific time of observation.  

14. From Equation 11-19b, the fundamental frequency of oscillation for a string with both ends fixed is 

1
2

v
f

L
.  The speed of waves on the string is given by Equation 11-13, TF

v
m L

.  Combining 
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these two relationships gives 1
1 2

TF
f

mL
.  By wrapping the string with wire, the mass of the string 

can be greatly increased without changing the length or the tension of the string, and thus the string 
has a low fundamental frequency.  

15. If you strike the horizontal rod vertically, you will create primarily transverse waves.  If you strike 
the rod parallel to its length, you will create primarily longitudinal waves.  

16. From Equation 11-14b, the speed of waves in a gas is given by v B .  A decrease in the density 

due to a temperature increase therefore leads to a higher speed of sound.  We expect the speed of 
sound to increase as temperature increases.  

17. (a) Similar to the discussion in section 11-9 for spherical waves, as a circular wave expands, the  
circumference of the wave increases.  For the energy in the wave to be conserved, as the 
circumference increases, the intensity has to decrease. The intensity of the wave is proportional 
to the square of the amplitude 

(b) The water waves will decrease in amplitude due to dissipation of energy from viscosity in the 
water (dissipative or frictional energy loss).  

18.  Assuming the two waves are in the same medium, then they will both have the same speed.  Since 
v f , the wave with the smaller wavelength will have twice the frequency of the other wave.  
From Equation 11-18, the intensity of wave is proportional to the square of the frequency of the 
wave.  Thus the wave with the shorter wavelength will transmit 4 times as much energy as the other 
wave.  

19.  The frequency must stay the same because the media is continuous – the end of one section of cord is 
physically tied to the other section of cord.  If the end of the first section of cord is vibrating up and 
down with a given frequency, then since it is attached to the other section of cord, the other section 
must vibrate at the same frequency.  If the two pieces of cord did not move at the same frequency, 
they would not stay connected, and then the waves would not pass from one section to another.  

20. The string could be touched at the location of a node 
without disturbing the motion, because the nodes do not 
move.  A string vibrating in three segments has 2 nodes in 
addition to the ones at the ends.  See the diagram.     

21. The energy of a wave is not localized at one point, because the wave is not localized at one point, 
and so to talk about the energy “at a node” being zero is not really a meaningful statement.  Due to 
the interference of the waves the total energy of the medium particles at the nodes points is zero, but 
the energy of the medium is not zero at points of the medium that are not nodes.  In fact, the anti-
node points have more energy than they would have if only one of the two waves were present.  

22. A major distinction between energy transfer by particles and energy transfer by waves is that 
particles must travel in a straight line from one place to another in order to transfer energy, but waves 
can diffract around obstacles.  For instance, sound can be heard around a corner, while you cannot 
throw a ball around a corner.  So if a barrier is placed between the source of the energy and the 

node

 

node
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location where the energy is being received, and energy is still received in spite of the barrier, it is a 
good indication that the energy is being carried by waves.  If the placement of the barrier stops the 
energy transfer, it could be that the energy transfer is being carried out by particles.  It could also be 
that the energy transfer is being carried out with waves whose wavelength is much smaller than the 
dimensions of the barrier.   

Solutions to Problems  

1. The particle would travel four times the amplitude: from x A  to 0x  to x A  to 0x  to  

x A .  So the total distance 4 4 0.18 m 0.72 mA .  

2. The spring constant is the ratio of applied force to displacement. 

2180 N 75 N 105 N
5.3 10 N m

0.85 m 0.65 m 0.20 m

F
k

x

   

3. The spring constant is found from the ratio of applied force to displacement. 
2

5

3

68 kg 9.8m s
1.333 10 N m

5 10 m

F mg
k

x x

 

The frequency of oscillation is found from the total mass and the spring constant. 
51 1 1.333 10 N m

1.467 Hz 1.5 Hz
2 2 1568 kg

k
f

m

  

4. (a) The spring constant is found from the ratio of applied force to displacement. 
2

2

2

2.7 kg 9.80 m s
735 N m 7.4 10 N m

3.6 10 m

F mg
k

x x

  

(b) The amplitude is the distance pulled down from equilibrium, so 22.5 10 mA

  

The frequency of oscillation is found from the total mass and the spring constant. 

1 1 735 N m
2.626 Hz 2.6 Hz

2 2 2.7 kg

k
f

m

  

5. The spring constant is the same regardless of what mass is hung from the spring. 

1 1 2 2

2 1 1 2

1

    

2 constant      
2

3.0 Hz 0.60 kg 0.38 kg 3.8 Hz

f k m k f m f m f m

f f m m

  

6. The table of data is 
shown, along with the 
smoothed graph.  
Every quarter of a 
period, the mass 
moves from an 
extreme point to the 
equilibrium.  The graph resembles a cosine wave (actually, the opposite of a cosine wave). 

-1

0

1

0 0.25 0.5 0.75 1 1.25

time / T

time position
0 - A

T /4 0
T/2 A

3T/4 0
T - A

5T/4 0
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7. The relationship between frequency, mass, and spring constant is 
1

2

k
f

m
.  

(a) 
22 2 2 41

    
4 4 4.0 Hz 2.5 10 kg 0.1579 N m 0.16 N m

2

k
f k f m

m

  
(b) 

4

1 1 0.1579 N m
2.8 Hz

2 2 5.0 10 kg

k
f

m

  

8. The spring constant is the same regardless of what mass is attached to the spring. 

2 2 2

1 1 2 12

2
2 2

2 2

1    
constant      

2 4

0.68 kg 0.60 Hz

 

kg 0.88 Hz kg 0.68 kg 0.60 Hz    0.59 kg
0.88 Hz 0.60 Hz

k k
f mf m f m f

m

m m m

  

9. (a) At equilibrium, the velocity is its maximum.    

max 2 2 3 Hz 0.13 m 2.450 m s 2.5m s
k

v A A fA
m

  

(b) From Equation (11-5), we find the velocity at any position.    
22

max 22

0.10 m
1 2.45m s 1 1.565m s 1.6m s

0.13 m

x
v v

A

  

(c) 
221 1

total max2 2
0.60 kg 2.45 m s 1.801J 1.8 JE mv

  

(d) Since the object has a maximum displacement at t = 0, the position will be described by the  
cosine function.    

0.13 m cos 2 3.0 Hz    0.13 m cos 6.0x t x t

  

10. The relationship between the velocity and the position of a SHO is given by Equation (11-5).  Set 
that expression equal to half the maximum speed, and solve for the displacement.   

2 2 2 2 2 2 2 2 31 1 1
max max2 2 4 4

1    1    1      

3 2 0.866

v v x A v x A x A x A

x A A

  

11. Since F kx ma  for an object attached to a spring, the acceleration is proportional to the  
displacement (although in the opposite direction), as a x k m .  Thus the acceleration will have 

half its maximum value where the displacement has half its maximum value, at 1
02

x

  

12. The spring constant can be found from the stretch distance corresponding to the weight suspended on  
the spring.   

22.62 kg 9.80m s
81.5 N m

0.315 m

F mg
k

x x

 

After being stretched further and released, the mass will oscillate.  It takes one-quarter of a period for 
the mass to move from the maximum displacement to the equilibrium position. 



Chapter 11  Vibrations and Waves  

© 2005 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the 
publisher. 

274  

1 1
4 4

2.62 kg
2 0.282 s

2 81.5 N m
T m k

  
13. (a) The total energy of an object in SHM is constant.  When the position is at the amplitude, the  

speed is zero.  Use that relationship to find the amplitude.    
2 2 21 1 1

tot 2 2 2

2 22 2 2 2

  

3.0 kg
0.55m s 0.020 m 6.034 10 m 6.0 10 m

280 N m

E mv kx kA

m
A v x

k

  

(b) Again use conservation of energy.  The energy is all kinetic energy when the object has its  
maximum velocity. 

2 2 2 21 1 1 1
tot max2 2 2 2

2

max

  

280 N m
6.034 10 m 0.5829 m s 0.58m s

3.0 kg

E mv kx kA mv

k
v A

m

  

14. The spring constant is found from the ratio of applied force to displacement. 

280.0 N
4.00 10 N m

0.200 m

F
k

x

 

Assuming that there are no dissipative forces acting on the ball, the elastic potential energy in the 
loaded position will become kinetic energy of the ball.   

2
2 21 1
max max max max2 2

4.00 10 N m

        

0.200 m 9.43m s
0.180 kg

i f

k
E E kx mv v x

m

  

15. (a) The work done to compress a spring is stored as potential energy.     

2 21
2 22

2 3.0 J2

    

416.7 N m 4.2 10 N m
0.12 m

W
W kx k

x

 

(b) The distance that the spring was compressed becomes the amplitude of its motion.  The  

maximum acceleration is given by max

k
a A

m
.  Solve this for the mass.  

2

max 2

max

4.167 10 N m

    

0.12 m 3.333 kg 3.3 kg
15m s

k k
a A m A

m a

  

16. The general form of the motion is cos 0.45cos 6.40x A t t . 

 (a) The amplitude is max 0.45 mA x .  

(b) The frequency is found by 
1

1 6.40 s
2 6.40 s    1.019 Hz 1.02 Hz

2
f f

  

(c) The total energy is given by  
222 11 1 1

total max2 2 2
0.60 kg 6.40 s 0.45 m 2.488J 2.5 JE mv m A

  

(d) The potential energy is given by  
2 22 2 2 11 1 1

potential 2 2 2
0.60 kg 6.40 s 0.30 m 1.111J 1.1 JE kx m x
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The kinetic energy is given by     

kinetic total potential 2.488 J 1.111 J 1.377 J 1.4 JE E E

  
17. If the energy of the SHO is half potential and half kinetic, then the potential energy is half the total 

energy.  The total energy is the potential energy when the displacement has the value of the 
amplitude.   

2 21 1 1 1
pot tot2 2 2 2

1

        

0.707
2

E E kx kA x A A

  

18. If the frequencies and masses are the same, then the spring constants for the two vibrations are the 
same.  The total energy is given by the maximum potential energy.   

221
11 2 1 1
21

2 2 2 22

7.0    7.0 2.6
kAE A A

E kA A A

  

19. (a) The general equation for SHM is Equation (11-8c), cos 2y A t T .  For the pumpkin,     

2
0.18 m cos

0.65 s

t
y .  

(b) The time to return back to the equilibrium position is one-quarter of a period. 
1 1
4 4

0.65 s 0.16 st T

  

(c) The maximum speed is given by the angular frequency times the amplitude.    

max

2 2
0.18 m 1.7 m s

0.65 s
v A A

T

  

(d) The maximum acceleration is given by  
2 2

2 2

max 2

2 4
0.18 m 17 m s

0.65 s
a A A

T
.   

The maximum acceleration is first attained at the release point of the pumpkin.  

20. Consider the first free-body diagram for the block while it is 
at equilibrium, so that the net force is zero.  Newton’s 2nd 

law for vertical forces, choosing up as positive, gives this.   

A B A B0    yF F F mg F F mg

 

Now consider the second free-body diagram, in which the 
block is displaced a distance x  from the equilibrium point.  
Each upward force will have increased by an amount kx , 
since 0x .  Again write Newton’s 2nd law for vertical forces.   

A B A B A B2 2y netF F F F mg F kx F kx mg kx F F mg kx

 

This is the general form of a restoring force that produces SHM, with an effective spring constant of 
2k .  Thus the frequency of vibration is as follows.    

effective

1 1 2

2 2

k
f k m

m

   

AF

mg
mg

BF
AF

BF
x 
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21. The equation of motion is 0.38sin 6.50 sinx t A t .  

(a) The amplitude is max 0.38 mA x .  

(b) The frequency is found by 
1

1 6.50 s
2 6.50 s    1.03Hz

2
f f

  
(c) The period is the reciprocal of the frequency.  1 1 1.03 Hz 0.967 sT f .  
(d) The total energy is given by  

222 11 1 1
total max2 2 2

0.300 kg 6.50 s 0.38 m 0.9151 J 0.92 JE mv m A .  

(e) The potential energy is given by  
2 22 2 2 1 21 1 1

potential 2 2 2
0.300 kg 6.50 s 0.090m 0.0513J 5.1 10 JE kx m x .   

The kinetic energy is given by     

kinetic total potential 0.9151J 0.0513J 0.8638 J 0.86 JE E E .   

(f)            

22. (a) For A, the amplitude is A 2.5 mA .  For B, the amplitude is B 3.5 mA . 

(b) For A, the frequency is 1 cycle every 4.0 seconds, so A 0.25 Hzf .  For B, the frequency is 1  

cycle every 2.0 seconds, so B 0.50 Hzf .  

(c) For C, the period is A 4.0 sT .  For B, the period is B 2.0 sT

  

(d) Object A has a displacement of 0 when 0t , so it is a sine function.   

A A A Asin 2    2.5 m sin
2

x A f t x t

 

Object B has a maximum displacement when 0t , so it is a cosine function.   

B B B Bcos 2    3.5 m cosx A f t x t

  

23. (a) Find the period and frequency from the mass and the spring constant. 

2 2 0.755 kg 124 N m 0.490 s        1 1 0.490 s 2.04HzT m k f T

  

(b) The initial speed is the maximum speed, and that can be used to find the amplitude.    

max max

    

2.96m s 0.755 kg 124 N m 0.231 mv A k m A v m k

  

(c) The maximum acceleration can be found from the mass, spring constant, and amplitude    
2

max 0.231 m 124 N m 0.755 kg 37.9m sa Ak m

  

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

time (sec)

x 
(m

)
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(d) Because the mass started at the equilibrium position of x = 0, the position function will be  
proportional to the sine function.    

0.231 m sin 2 2.04 Hz    0.231 m sin 4.08x t x t

  
(e) The maximum energy is the kinetic energy that the object has when at the equilibrium position.    

221 1
max2 2

0.755 kg 2.96m s 3.31 JE mv

  

24.  We assume that downward is the positive direction of motion.  For this motion, we have  

305 N mk , 0.280 m , 0.260 kgA m  and 305 N m 0.260 kg 34.250 rad sk m .  

(a) Since the mass has a zero displacement and a positive velocity at t = 0, the equation is a sine  
function.    

0.280 m sin 34.3rad sy t t

  

(b) The period of oscillation is given by 
2 2

0.18345s
34.25 rad s

T .  The spring will have  

its maximum extension at times given by the following.  

2

max 4.59 10 s 0.183 s , 0,1, 2,
4

T
t nT n n

   

The spring will have its minimum extension at times given by the following.  

1

min

3
1.38 10 s 0.183 s , 0,1, 2,

4

T
t nT n n

  

25. If the block is displaced a distance x to the right in the diagram, then spring # 1 will exert a force  

1 1F k x , in the opposite direction to x.  Likewise, spring # 2 will exert a force 2 2F k x , in the 

same direction as 1F .  Thus the net force on the block is 1 2 1 2 1 2F F F k x k x k k x .  The 

effective spring constant is thus 1 2k k k , and the period is given by 
1 2

2 2
m m

T
k k k

.  

26. The energy of the oscillator will be conserved after the collision.  Thus    
2 21 1

max max2 2    
E kA m M v v A k m M

 

This speed is the speed that the block and bullet have immediately after the collision.  Linear 
momentum in one dimension will have been conserved during the collision, and so the initial speed 
of the bullet can be found.   

before after max

1 3
1

2 1    

6.25 10 kg 7.70 10 N m
2.15 10 m 597 m s

2.5 10 kg 6.25 10 kg

o

o

p p mv m M v

m M k
v A

m m M

  

27. The period of the jumper’s motion is 
38.0 s

4.75 s
8 cycles

T .  The spring constant can then be found  

from the period and the jumper’s mass.   
22

22

4 65.0 kg4
2    113.73N m 114 N m

4.75 s

m m
T k

k T
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The stretch of the bungee cord needs to provide a force equal to the weight of the jumper when he is 
at the equilibrium point.   

265.0 kg 9.80m s

    
5.60 m

113.73N m

mg
k x mg x

k

  
Thus the unstretched bungee cord must be 25.0 m 5.60 m 19.4 m

   

28. (a) The period is given by 
60 s

1.7s cycle
36 cycles

T .  

(b) The frequency is given by 
36 cycles

0.60 Hz
60 s

f .  

29. The period of a pendulum is given by 2T L g .  Solve for the length using a period of 2.0 

seconds.   
2 22

2 2

2.0 s 9.8m s
2    0.99 m

4 4

T g
T L g L

  

30. The period of a pendulum is given by 2T L g .  The length is assumed to be the same for the 

pendulum both on Mars and on Earth.  

MarsMars Earth

Earth MarsEarth

Earth
Mars Earth

Mars

2
2      

2

1
0.80 s 1.3 s

0.37

L gT g
T L g

T gL g

g
T T

g

  

31. The period of a pendulum is given by 2T L g .  

(a) 
2

0.80 m
2 2 1.8 s

9.8m s
T L g

  

(b) If the pendulum is in free fall, there is no tension in the string supporting the pendulum bob, and  
so no restoring force to cause oscillations.  Thus there will be no period – the pendulum will not 
oscillate and so no period can be defined.  

32. (a) The frequency can be found from the length of the  
pendulum, and the acceleration due to gravity.    

21 1 9.80m s
0.57151 Hz 0.572 Hz

2 2 0.760 m

g
f

L

  

(b) To find the speed at the lowest point, use the conservation of  
energy relating the lowest point to the release point of the 
pendulum.  Take the lowest point to be the zero level of 
gravitational potential energy.    

top bottom top top bottom bottom

21
o bottom2    

0 cos 0

E E KE PE KE PE

mg L L mv

 

L 

 

0 

cosh L L

cosL
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2 o

bottom o2 1 cos 2 9.80m s 0.760m 1 cos12.0 0.571 m sv gL

  
(c) The total energy can be found from the kinetic energy at the bottom of the motion.    

22 21 1
total bottom2 2

0.365 kg 0.571m s 5.95 10 JE mv

  
33. There are 24 h 60min h 60s min 86,400 s  in a day.  The clock should make one cycle in 

exactly two seconds (a “tick” and a “tock”), and so the clock should make 43,200 cycles per day.  
After one day, the clock in question is 30 seconds slow, which means that it has made 15 less cycles 
than required for precise timekeeping.  Thus the clock is only making 43,185 cycles in a day. 

Accordingly, the period of the clock must be decreased by a factor 
43,185

43, 200
.  

new old new old

2 2

new old

43,185 43,185

    

2 2  
43,200 43, 200

43,185 43,185
0.9930 m 0.9923 m

43, 200 43,200

T T L g L g

L L

 

Thus the pendulum should be shortened by 0.7 mm. 

 

34.  Use energy conservation to relate the potential energy at the  
maximum height of the pendulum to the kinetic energy at the 
lowest point of the swing.  Take the lowest point to be the zero 
location for gravitational potential energy.  See the diagram.   

top bottom top top bottom bottom

21
max max o2      

0    2 2 1 cos

E E KE PE KE PE

mgh mv v gh gL

  

35. The equation of motion for an object in SHM that has the maximum displacement at 0t  is given  
by cos 2x A f t .  For a pendulum, x L  and so max maxx A L , where  must be measured  

in radians.  Thus the equation for the pendulum’s angular displacement is   

max maxcos 2    cos 2L L f t f t

 

If both sides of the equation are multiplied by o180 rad , then the angles can be measured in 
degrees.  Thus the angular displacement of the pendulum can be written as below.  Please note that 
the argument of the cosine function is still in radians.  

o o o

max cos 2 15 cos 5.0ft t

 

(a) o o o0.25 s 15 cos 5.0 0.25 11t

 

(b) o o o1.6 s 15 cos 5.0 1.6 15t   (here the time is exactly 4 periods) 

(c) o o o500 s 15 cos 5.0 500 15t   (here the time is exactly 1250 periods)  

36. The wave speed is given by v f .  The period is 3.0 seconds, and the wavelength is 6.5 m.   

6.5 m 3.0 s 2.2m sv f T

    

L 

 

0 

cosh L L

cosL
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37. The distance between wave crests is the wavelength of the wave.   

343m s 262 Hz 1.31 mv f

  
38. To find the wavelength, use v f .  

AM:     
8 8

1 23 3

1 2

3.00 10 m s 3.00 10 m s
545 m      188 m    AM: 190 m to 550 m

550 10 Hz 1600 10 Hz

v v

f f

 

FM:    
8 8

1 26 6

1 2

3.00 10 m s 3.00 10 m s
3.41 m      2.78 m    FM: 2.78 m to 3.41 m

88.0 10 Hz 108 10 Hz

v v

f f

  

39. The elastic and bulk moduli are taken from Table 9-1 in chapter 9.  The densities are taken from 
Table 10-1 in chapter 10. 

(a) For water: 
9 2

3

3 3

2.0 10 N m
1.4 10 m s

1.00 10 kg m
v B

  

(b) For granite: 
9 2

3

3 3

45 10 N m
4.1 10 m s

2.7 10 kg m
v E

  

(c) For steel:  
9 2

3

3 3

200 10 N m
5.1 10 m s

7.8 10 kg m
v E

  

40. The speed of a longitudinal wave in a solid is given by v E .  Call the density of the less dense 

material 1 , and the density of the more dense material 2 .  The less dense material will have the 

higher speed, since the speed is inversely proportional to the square root of the density.   

11 2

2 12

2 1.41
Ev

v E

    

41. To find the time for a pulse to travel from one end of the cord to the other, the velocity of the pulse 

on the cord must be known.  For a cord under tension, we have TF
v

m L
.   

28 m

    

0.35 s
150 N

0.65 kg 28 m

T

T

Fx x
v t

t m L F

m L

  

42. (a) The speed of the pulse is given by    
2 620 m

77.5m s 78m s
16 s

x
v

t

  

(b) The tension is related to the speed of the pulse by  TF
v

m L
.  The mass per unit length of the  

cable can be found from its volume and density. 
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22 2
3 3

2

1.5 10 m

    
7.8 10 kg m 1.378kg m

2 22

m m m d

V Ld L

  
22 3

    
77.5m s 1.378kg m 8.3 10 NT

T

F m
v F v

m L L

  

43. The speed of the water wave is given by v B , where B  is the bulk modulus of water, from 

Table 9-1, and  is the density of sea water, from Table 10-1.  The wave travels twice the depth of 
the ocean during the elapsed time.   

9 2
3

3 3

2 3.0 s 2.0 10 N m

    

2.1 10 m
2 2 2 1.025 10 kg m

L vt t B
v L

t

  

44. (a) Both waves travel the same distance, so 1 1 2 2x v t v t .  We let the smaller speed be 1v , and  

the larger speed be 2v .  The slower wave will take longer to arrive, and so 1t  is more than 2t . 

1 2 2 1 2 2 2

1
2

2 1

3

2 2

2.0min 120 s    120 s  

5.5km s
120 s 120 s 220 s

8.5km s 5.5km s

8.5km s 220 s 1.9 10 km

t t t v t v t

v
t

v v

x v t

 

(b) This is not enough information to determine the epicenter.  All that is known is the distance of  
the epicenter from the seismic station.  The direction is not known, so the epicenter lies on a 

circle of radius 31.9 10 km  from the seismic station.  Readings from at least two other seismic 
stations are needed to determine the epicenter’s position.  

45.  We assume that the earthquake wave is moving the ground vertically, since it is a transverse wave.  
An object sitting on the ground will then be moving with SHM, due to the two forces on it – the 
normal force upwards from the ground and the weight downwards due to gravity.  If the object loses 
contact with the ground, then the normal force will be zero, and the only force on the object will be 
its weight.  If the only force is the weight, then the object will have an acceleration of g downwards.  
Thus the limiting condition for beginning to lose contact with the ground is when the maximum 
acceleration caused by the wave is greater than g.  Any larger downward acceleration and the ground 
would “fall” quicker than the object.  The maximum acceleration is related to the amplitude and the 
frequency as follows.   

2
2

max 22 2 2 2

9.8m s

    

0.99 m
4 4 0.50 Hz

g g
a A g A

f

  

46. (a) Assume that the earthquake waves spread out spherically from the source.  Under those  
conditions, Eq. (11-16b) applies, stating that intensity is inversely proportional to the square of 
the distance from the source of the wave. 

2 2

20 km 10 km 10 km 20 km 0.25I I

  

(b) The intensity is proportional to the square of the amplitude, and so the amplitude is inversely  
proportional to the distance from the source of the wave.    

20 km 10 km 10 km 20 km 0.50A A
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47. (a) Assuming spherically symmetric waves, the intensity will be inversely proportional to the  

square of the distance from the source.  Thus 2Ir  will be constant.  
2 2

near near far far

22
6 2 9 2 9 2far

near far 22

near

  

48 km
2.0 10 W m 4.608 10 W m 4.6 10 W m

1 km

I r I r

r
I I

r

  
(b) The power passing through an area is the intensity times the area.    

9 2 2 104.608 10 W m 5.0m 2.3 10 WP IA

  

48. From Equation (11-18), if the speed, medium density, and frequency of the two waves are the same, 
then the intensity is proportional to the square of the amplitude.   

2 2

2 1 2 1 2 1 2 12    2 1.41I I E E A A A A

  

The more energetic wave has the larger amplitude.   

49. From Equation (11-18), if the speed, medium density, and frequency of the two waves are the same, 
then the intensity is proportional to the square of the amplitude.   

2 2

2 1 2 1 2 1 2 13    3 1.73I I P P A A A A

  

The more energetic wave has the larger amplitude.   

50. The bug moves in SHM as the wave passes.  The maximum KE of a particle in SHM is the total 
energy, which is given by 21

total 2
E kA .  Compare the two KE maxima.   

2 221
22 2 2

21
1 1 12

2.25 cm
0.56

3.0 cm

kAKE A

KE kA A

  

51. (a)          (b)               

(c) The energy is all kinetic energy at the moment when the string has no displacement.  There is  
no elastic potential energy at that moment.   Each piece of the string has speed but no  
displacement.  

52. The frequencies of the harmonics of a string that is fixed at both ends are given by 1nf nf , and so 

the first four harmonics are 1 2 3 4440 Hz , 880 Hz , 1320 Hz , 1760 Hzf f f f .  

53. The fundamental frequency of the full string is given by unfingered 294 Hz
2

v
f

L
.  If the length is 

reduced to 2/3 of its current value, and the velocity of waves on the string is not changed, then the 
new frequency will be  

-1

-0.5

0

0.5

1

-4 -2 0 2 4
-1

-0.5

0

0.5

1

-4 -2 0 2 4
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fingered unfingered2
3

3 3 3
294 Hz 441 Hz

2 2 2 2 2

v v
f f

L L

  
54. Four loops is the standing wave pattern for the 4th harmonic, with a frequency given by 

4 14 280 Hzf f .  Thus 1 2 3 570 Hz , 140 Hz ,  210 Hz and  350 Hzf f f f  are all other 

resonant frequencies.  

55. Adjacent nodes are separated by a half-wavelength, as examination of Figure 11-40 will show.   

21
node 2

92m s

    

9.7 10 m
2 2 475 Hz

v v
x

f f

  

56.  Since 1nf nf , two successive overtones differ by the fundamental frequency, as shown below.   

1 1 1 11 350 Hz 280 Hz 70 Hzn nf f f n f nf f

  

57. The speed of waves on the string is given by equation (11-13), TF
v

m L
.  The resonant frequencies 

of a string with both ends fixed are given by equation (11-19b), 
vib2

n

nv
f

L
, where vibL  is the length 

of the portion that is actually vibrating. Combining these relationships allows the frequencies to be 
calculated.   

T
1 3

vib

2 1 3 1

1 520 N

        

290.77 Hz
2 2 0.62 m 3.6 10 kg 0.90 m

2 581.54Hz     3 872.31Hz

n

Fn
f f

L m L

f f f f

  

So the three frequencies are 290 Hz , 580 Hz , 870 Hz , to 2 significant figures.  

58. From Equation (11-19b), 
2

n

nv
f

L
, we see that the frequency is proportional to the wave speed on 

the stretched string.  From equation (11-13), TF
v

m L
, we see that the wave speed is proportional 

to the square root of the tension.  Thus the frequency is proportional to the square root of the tension.   
2 2

T 2 2 2
T 2 T 1 T 1 T 1

T 1 1 1

200 Hz

    

0.952 
205 Hz

F f f
F F F F

F f f

  

Thus the tension should be decreased by 4.8% .  

59. The string must vibrate in a standing wave pattern to have a certain number of loops.  The frequency 
of the standing waves will all be 60 Hz, the same as the vibrator.  That frequency is also expressed 

by Equation (11-19b), 
2

n

nv
f

L
.  The speed of waves on the string is given by Equation (11-13), 
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TF
v

m L
.  The tension in the string will be the same as the weight of the masses hung from the end 

of the string,  TF mg .  Combining these relationships gives an expression for the masses hung 

from the end of the string.  

(a) 
2 2

T

2

4    

2 2 2
n

n

L f m LFnv n n mg
f m

L L m L L m L n g

 

2 2 4

1 2 2

4 1.50 m 60 Hz 3.9 10 kg m
1.289 kg 1.3 kg

1 9.80m s
m

  

(b) 1
2 2

1.289 kg
0.32 kg

2 4

m
m

  

(c) 21
5 2

1.289 kg
5.2 10 kg

5 25

m
m

  

60. The tension in the string is the weight of the hanging mass, TF mg .  The speed of waves on the 

string can be found by TF mg
v

m L m L
, and the frequency is given as 60 Hzf .  The 

wavelength of waves created on the string will thus be given by    
2

4

0.080 kg 9.80m s1 1
0.7473 m

60 Hz 3.9 10 kg m

v mg

f f m L
.  

The length of the string must be an integer multiple of half of the wavelength for there to be nodes at 
both ends and thus form a standing wave.  Thus 2, , 3 2, L , and so on.  This gives 

0.37 m , 0.75 m , 1.12 m , 1.49 mL  as the possible lengths, and so there are 4  standing wave 
patterns that may be achieved.  

61. From the description of the water’s behavior, there is an anti-node at each end of the tub, and a node 
in the middle.  Thus one wavelength is twice the tube length.   

tub2 2 0.65 m 0.85 Hz 1.1m sv f L f

  

62.  The speed in the second medium can be found from the law of refraction, Equation (11-20).   
o

2 2 2
2 1 o

1 1 1

sin sin sin 35

    

8.0km s 6.3km s
sin sin sin 47

v
v v

v

  

63.  The angle of refraction can be found from the law of refraction, Equation (11-20).   

o 1 o2 2 2
2 1 2

1 1 1

sin 2.1m s

    

sin sin sin 34 0.419    sin 0.419 25
sin 2.8m s

v v

v v

  

64. The angle of refraction can be found from the law of refraction, Equation (11-20).  The relative 
velocities can be found from the relationship given in the problem. 
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o o2 2 2
2

1 1 1

1 o

2

331 0.60 10sin 331 0.60 325

    
sin sin 25 sin 25 0.4076

sin 331 0.60 331 0.60 10 337

sin 0.4076 24

v T

v T

  
65. The angle of refraction can be found from the law of refraction, Equation (11-20).  The relative 

velocities can be found from Equation (11-14a).   

2 1 water2 2 1 1

1 1 2 2 water 21

o 1 o1
2 1 2

2

sin

sin

3.6
sin sin sin 38 0.70    sin 0.70 44

2.8

E SGv SG

v SG SGE

SG

SG

  

66. The error of 2o is allowed due to diffraction of the waves.  If the waves are incident at the “edge” of 
the dish, they can still diffract into the dish if the relationship L  is satisfied.     

o 2 2

o

 rad

    

0.5 m 2 1.745 10 m 2 10 m
180

L
L

  

If the wavelength is longer than that, there will not be much diffraction, but “shadowing” instead.  

67. The unusual decrease of water corresponds to a trough in Figure 11-24.  The crest or peak of the 
wave is then one-half wavelength distant.  The peak is 125 km away, traveling at 750 km/hr.   

125 km 60 min

    

10 min
750km hr 1 hr

x
x vt t

v

  

68. Apply the conservation of mechanical energy to the car, calling condition # 1 to be before the 
collision and condition # 2 to be after the collision.  Assume that all of the kinetic energy of the car is 
converted to potential energy stored in the bumper.  We know that 1 0x  and 2 0v .   

2 2 2 2 2 21 1 1 1 1 1
1 2 1 1 2 2 1 22 2 2 2 2 2

2 1 3

          

1500 kg
2.2 m s 0.11 m

550 10 N m

E E mv kx mv kx mv kx

m
x v

k

   

69. Consider the conservation of energy for the person.  Call the unstretched position of the fire net the 
zero location for both elastic potential energy and gravitational potential energy.  The amount of 
stretch of the fire net is given by x, measured positively in the downward direction.  The vertical 
displacement for gravitational potential energy is given by the variable y, measured positively for the 
upward direction.  Calculate the spring constant by conserving energy between the window height 
and the lowest location of the person.  The person has no kinetic energy at either location.   

21
top bottom top bottom bottom2

bottom 2 4

22

bottom    

18 m 1.1 m
2 2 65 kg 9.8 m s 2.011 10 N m

1.1 m

top

E E mgy mgy kx

y y
k mg

x

 

      

(a) If the person were to lie on the fire net, they would stretch the net an amount such that the 
upward force of the net would be equal to their weight. 
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2

2

4

65 kg 9.8m s

    
3.2 10 m

2.011 10 N m

mg
F kx mg x

k

 
(b) To find the amount of stretch given a starting height of 35 m, again use conservation of energy.  

Note that bottomy x , and there is no kinetic energy at the top or bottom positions.    

2 21
top bottom top bottom 2

2 2

2

4 4

2

        
2 2 0

65 kg 9.8m s 65 kg 9.8 m s
2 2 35 m 0  

2.011 10 N m 2.011 10 N m

0.06335 2.2173 0    1.5211 m , 1.458 m

top

mg mg
E E mgy mgy kx x x y

k k

x x

x x x

 

This is a quadratic equation.  The solution is the positive root, since the net must be below the 

unstretched position.  The result is 1.5 m .  

70. Consider energy conservation for the mass over the range of motion 
from “letting go” (the highest point) to the lowest point.  The mass falls 
the same distance that the spring is stretched, and has no KE at either 
endpoint.  Call the lowest point the zero of gravitational potential 
energy.  The variable “x” represents the amount that the spring is 
stretched from the equilibrium position.   

top bottomE E

 

2 2 2 21 1 1 1
top top top bottom bottom bottom2 2 2 2

2 21
2

2

2 2
0 0 0 0        

2 9.8m s1 2 1
1.2 Hz

2 2 2 0.33 m

mv mgy kx mv mgy kx

k g g
mgH kH

m H H

g
f

H

  

71. (a) From conservation of energy, the initial kinetic energy of the car will all be changed into elastic  
potential energy by compressing the spring. 

2 2 2 2 2 21 1 1 1 1 1
1 2 1 1 2 2 1 22 2 2 2 2 2

          

E E mv kx mv kx mv kx

  

22
4 41

22

2

22 m s
950 kg 1.8392 10 N m 1.8 10 N m

5.0 m

v
k m

x

 

(b) The car will be in contact with the spring for half a period, as it moves from the equilibrium 
location to maximum displacement and back to equilibrium.    

1 1
2 2 4

950 kg
2 0.71 s

1.8392 10 N m

m
T

k

  

72. The frequency at which the water is being shaken is about 1 Hz.  The sloshing coffee is in a standing 
wave mode, with anti-nodes at each edge of the cup.  The cup diameter is thus a half-wavelength, or 

16 cm .  The wave speed can be calculated from the frequency and the wavelength.   

16 cm 1 Hz 16cm sv f

  

x = 0

 

x = H

 

y = 0

 

y = H
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73. Relative to the fixed needle position, the ripples are moving with a linear velocity given by  

2 0.108 mrev 1min
33 0.373m s

min 60 s 1 rev
v

  
This speed is the speed of the ripple waves moving past the needle.  The frequency of the waves is   

3

0.373m s
220 Hz

1.70 10 m

v
f

  

74. The equation of motion is 0.650cos 7.40 cosx t A t .  

(a) The amplitude is 0.650 mA

  

(b) The frequency is given by 
7.40 rad s

2 7.40 rad s    1.177 Hz 1.18 Hz
2 rad

f f

  

(c) The total energy is given by 
2 22 2 21 1 1

total 2 2 2
2.00 kg 7.40 rad s 0.650 m 23.136 J 23.1 JE kA m A .  

(d) The potential energy is found by     
2 22 2 21 1 1

2 2 2
2.00 kg 7.40 rad s 0.260 m 3.702 J 3.70 JPE kx m x .   

The kinetic energy is found by    

total 23.136 J 3.702 J 19.4 JKE E PE .  

75. The frequency of a simple pendulum is given by 
1

2

g
f

L
.  The pendulum is accelerating 

vertically which is equivalent to increasing (or decreasing) the acceleration due to gravity by the 
acceleration of the pendulum.   

(a) new

1 1 1.50 1
1.50 1.50 1.22

2 2 2

g a g g
f f f

L L L

 

(b) new

1 1 0.5 1
0.5 0.5 0.71

2 2 2

g a g g
f f f

L L L

  

76. The force of the man’s weight causes the raft to sink, and that causes the water to put a larger upward 
force on the raft.  This extra buoyant force is a restoring force, because it is in the opposite direction 
of the force put on the raft by the man.  This is analogous to pulling down on a mass-spring system 
that is in equilibrium, by applying an extra force.  Then when the man steps off, the restoring force 
pushes upward on the raft, and thus the raft – water system acts like a spring, with a spring constant 
found as follows.    

2

4

2

75 kg 9.8m s
1.8375 10 N m

4.0 10 m

F
k

x

  

(a) The frequency of vibration is determined by the spring constant and the mass of the raft.     
41 1 1.8375 10 N m

1.455Hz 1.5 Hz
2 2 220 kg

n

k
f

m

  

(b) As explained in the text, for a vertical spring the gravitational potential energy can be ignored if  
the displacement is measured from the oscillator’s equilibrium position.  The total energy is 
thus  

22 4 21 1
total 2 2

1.8375 10 N m 4.0 10 m 14.7 J 15 JE kA . 
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77. (a) The overtones are given by 1, 2,3, 4nf nf n

    
2 3

2 3

G :   2 392 Hz 784 Hz     3 392 Hz 1180 Hz

A :   2 440 Hz 880 Hz     3 440 Hz 1320 Hz

f f

f f

  
(b) If the two strings have the same length, they have the same wavelength.  The frequency  

difference is then due to a difference in wave speed caused by different masses for the strings.    

T
2 2

A T

440

    

1.26
392

GG G G GA A

A A G A G

A

F

m Lf v v mm f

f v v m m fF

m L

  

(c) If the two strings have the same mass per unit length and the same tension, then the wave speed  
on both strings is the same.  The frequency difference is then due to a difference in wavelength.  
For the fundamental, the wavelength is twice the length of the string.    

A

2 440

    

1.12
2 392

G G GA A A

G G A GA

vf LL f

f v L L f

  

(d) If the two strings have the same length, they have the same wavelength.  The frequency 
difference is then due to a difference in wave speed caused by different tensions for the strings.    

T
2 2

T T

A T TT

392

    

0.794
440

G

G G G G G G

A A A A A AA

F

m Lf v v F F f

f v v F F fF

m L

  

78. (a) Since the cord is not accelerating to the left or right, the tension in the cord must be the same  
everywhere.  Thus the tension is the same in the two parts of the cord.  The speed difference 
will then be due to the different mass densities of the two parts of the cord.  Let the symbol 

 

represent the mass per unit length of each part of the cord.    

T
H H

L T
L

v
L

H

Fv

F

  

(b) The wavelength ratio is found as follows.    

H H H

L LL

L

H

v f v

v f v

 

The two frequencies must be the same for the cord to remain continuous at the boundary.  If the 
two parts of the cord oscillate at different frequencies, the cord cannot stay in one piece, 
because the two parts would be out of phase with each other at various times.  

(c) Since H L , we see that H L , and so the wavelength is greater in the lighter cord .  

79. (a) The maximum speed is given by  
3

max 2 2 264 Hz 1.8 10 m 3.0m sv f A .  

(b) The maximum acceleration is given by     
22 2 2 3 3 2

max 4 4 264 Hz 1.8 10 m 5.0 10 m sa f A .  
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80.  For the pebble to lose contact with the board means that there is no normal force of the board on the 
pebble.  If there is no normal force on the pebble, then the only force on the pebble is the force of 
gravity, and the acceleration of the pebble will be g downward, the acceleration due to gravity.  This 
is the maximum downward acceleration that the pebble can have.  Thus if the board’s downward 
acceleration exceeds g, then the pebble will lose contact.  The maximum acceleration and the 

amplitude are related by 2 2

max 4a f A .   
2

2 2 1

max 22 2 2

9.8m s
4    1.1 10 m

4 4 1.5 Hz

g
a f A g A

f

  

81. For a resonant condition, the free end of the string will be an antinode, and the fixed end of the string 
will be a node.  The minimum distance from a node to an antinode is 4 .  Other wave patterns that 
fit the boundary conditions of a node at one end and an antinode at the other end include 

3 4 , 5 4 , .  See the diagrams.  The general relationship is 2 1 4 , 1, 2,3,L n n .  

Solving for the wavelength gives 
4

 

, 1,2,3,
2 1

L
n

n

 

.          

82. The period of a pendulum is given by 2T L g , and so the length is 
2

24

T g
L . 

(a) 

2 22

Austin
Austin 2 2

2.000 s 9.793m s
0.9922 m

4 4

T g
L

 

(b) 

2 22

Paris
Paris 2 2

Paris Austin

2.000 s 9.809m s
0.9939 m

4 4

0.9939 m 0.9922 m 0.0016 m 1.6 mm

T g
L

L L

 

(c) 

2 22

Moon
Moon 2 2

2.00 s 1.62m s
0.164 m

4 4

T g
L

  

83. The spring, originally of length 0l , will be stretched downward to a new equilibrium length L  when 

the mass is hung on it.  The amount of downward stretch 0L l  is found from setting the spring force 

upward on the mass equal to the weight of the mass:  0 0    k L l mg L l mg k .  The length 

of the pendulum is then 0L l mg k .  The period of the vertical oscillations is given by 

ver 2T m k , while the period of the pendulum oscillations is given by pen 2T L g .  Now 

compare the periods of the two motions. 

-1

0

1

0 1n = 5

 

n = 3

 

n = 1
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0pen 0 0

ver

0
pen ver

2
1 1  

2

, by a factor of 1

l mg k gT l mg k l k

T mg k mgm k

l k
T T

mg

  

84. Block m stays on top of block M (executing SHM relative to the ground) without slipping due to  
static friction.  The maximum static frictional force on m is fr

max
sF mg .  This frictional force causes 

block m to accelerate, so max max    s sma mg a g .  Thus for the blocks to stay in contact 

without slipping, the maximum acceleration of block M is also max sa g .  But an object in SHM 

has a maximum acceleration given by 2

max

total

k
a A A

M
.  Equate these two expressions for the 

maximum acceleration.   
2

max

0.30 9.8m s

    

6.25 kg 0.14 m
130 N m

s
s

total

gk
a A g A M m

M k

  

85. The speed of the pulses is found from the tension and mass per unit length of the wire.   

T 255 N
143.985m s

0.123 kg 10.0 m

F
v

m L

  

The total distance traveled by the two pulses will be the length of the wire.  The second pulse has a 
shorter time of travel than the first pulse, by 20.0 ms.   

2

1 2 1 2 1 1

22
2

1

2

1 1

2.00 10

10.0 m 2.00 10 143.985m s2.00 10
4.4726 10 s

2 2 143.985m s

143.985m s 4.4726 10 s 6.44 m

L d d vt vt vt v t

L v
t

v

d vt

  

The two pulses meet 6.44 m  from the end where the first pulse originated.  

86. For the penny to stay on the block at all times means that there will be a normal force on the penny 
from the block, exerted upward.  If down is taken to be the positive direction, then the net force on the 
penny is net NF mg F ma .  Solving for the magnitude of the normal force gives NF mg ma .  

This expression is always positive if the acceleration is upwards (a < 0 ), and so there is no possibility 
of the penny losing contact while accelerating upwards.  But if a downward acceleration were to be 
larger than g, then the normal force would go to zero, since the normal force cannot switch directions 

0NF .  Thus the limiting condition is downa g .  This is the maximum value for the acceleration.  

For SHM, we also know that 2

max

k k
a A A A

M m M
.  Equate these two values for the 

acceleration.    

max    

k Mg
a A g A

M k
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87. The car on the end of the cable produces tension in the cable, and stretches the cable according to 

Equation (9-4), 
1

o

F
L L

E A
, where E  is Young’s modulus.  Rearrange this equation to see that 

the tension force is proportional to the amount of stretch, 
o

EA
F L

L
, and so the effective spring 

constant is 
o

EA
k

L
.  The period of the bouncing can be found from the spring constant and the mass 

on the end of the cable.   

29 2 3

1200 kg 22 m
2 2 2 0.40 s

200 10 N m 3.2 10 m

omLm
T

k EA

  

88. From Equation (9-6) and Figure (9-22c), the restoring force on the top of the Jell-O is 
o

GA
F L

L
, 

and is in the opposite direction to the displacement of the top from the equilibrium condition.  Thus 

the “spring constant” for the restoring force is 
o

GA
k

L
.  If you were to look at a layer of Jell-O 

closer to the base, the displacement would be less, but so would the restoring force in proportion, and 
so we estimate all of the Jell-O as having the same spring constant.  The frequency of vibration can 
be determined from the spring constant and the mass of the Jell-O.   

  

2

2

23 2

1 1 1 1

2 2 2 2

1 520 N m   
2.5 Hz

2 1300 kg m 4.0 10 m

o o

o o

GA L GA Lk G
f

m V AL L

   




